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Topographic Rossby waves in elongated basins on the f-plane are studied by 
transforming the linear boundary-value problem for the mass transport stream 
function into a class of two-point boundary-value problems of which the independent 
spatial variable is the (curved) basin axis. The procedure for deriving the substitute 
problems is the Method of Weighted Residuule. What emerges is a vector differential 
equation and associated boundary conditions, its dimension indicating the order of 
the approximate model. It is shown that each substitute problem in the class entails 
the qualitative features typical of topographic waves, and increasing the order of the 
model corresponds to higher-order approximations. Equations are explicitly 
presented for cross-sectional distributions of the lake topography which has a 
power-law representation and permits the analysis of weak and strong topographies. 

Straight channels in which the depth profile does not change with position along 
the axis are studied in detail. The dispersion relation is discussed and dispersion 
curves are shown for the three lowest-order models. Convergence properties are 
thereby uncovered and phase speed and group velocity properties are found as they 
depend on wavenumber and topography. Further, for the lowest two modes, 
cross-channel stream-function distributions are presented. Apart from further con- 
vergence properties these distributions show that for U -shaped channels wave 
activity is nearer to the shore than for V-shaped channels, important information 
in the design of mooring systems. 

An analysis of topographic Rossby wave reflection follows, which emphasizes the 
importance of the depth profile in the reflecting zone. Based on these results some 
lake solutions are presented. 

1. Introduction 
Recent years have witnessed an increased impetus in topographic wave studies in 

lakes. These studies arose from detailed measurements of lake currents and temper- 
ature and long periodic features discerned from them. Our own observations of 
thermocline oscillations in the Swiss Lakes of Lugano and Zurich show long periodic 
components (74 h and 100 h periods) that were believed to be interpretable as 
topographic wave motions (Hutter, Salvade & Schwab 1983). This is a surprise for 
such small-scale lakes but the observed periods could not be explained by an internal 
seiche mode (first-class waves) as the periods lie significantly above those of the 
internal seiches. A simple elliptical model was constructed (Mysak et al. 1985) that 
permitted interpretation of the observations in a qualitative sense. This model was 
‘tuned ’ to approximate the Lake Lugano geometry and bathymetry. Spectral 
distributions, coherence8 and phase differences of temperature-time series for Lake 
Lugano observations at the 74 h period were shown to be essentially compatible with 
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the topographic wave results of the elliptic model (Mysak et al. 1985). A similarly 
convincing proof was established for the Lake Zurich observations of internal 
oscillations with a period of approximately 100 h (K. Hutter, unpublished work). 

On the other hand, recent finite-element calculations (Trosch 1984) and the 
required basin shape of the Mysak model indicate that topographic wave motion in 
these lakes may be more complex than described by the several models used so far. 

Second-class motions in enclosed basins were analysed by Lamb (1932) (circular 
basin with parabolic bottom), Ball (1965) (elliptical basin with parabolic bottom), 
Saylor, Huang & Reid (1980) (fundamental-mode results for a circular basin with a 
radial profile described by an arbitrary power law) and Mysak et al. (1985) (elliptical 
basins whose depth contours follow confocal ellipses). Because the topographic wave 
operator is non-separable in general the set of analytic solutions is scarce and 
approximate solution techniques must be used. Such methods were first applied when 
Chrystal (1904, 1905) and Defant (1918) presented a set of differential equations for 
gravity waves in long channel-like fluid basins. The gist of their analysis was to ignore 
locally the fluid motion transverse to the basin axis and the result was a set of 
equations involving only one single independent spatial variable, the arc length along 
the axis. It is known that extending this so-called ‘Defant model’ to include the 
effects of the rotation of the Earth in any systematic fashion is notoriously difficult 
(Raggio & Hutter 1982). Because second-class motions are rotation induced, concep- 
tual difficulties with such a model are akin to those encountered in first-class 
motions on a rotating basin but, given the previous experience, are easily overcome. 

The basic idea is to express the transverse distribution of the mass transport field 
in a local curvilinear coordinate system in terms of a preselected function set and to 
eliminate this dependence by a ‘smearing operation ’. By this process, the original 
(spatially two-dimensional) boundary-value problem is replaced by another formu- 
lation in a domain of reduced dimension. Here, the reduced problem is a two-point 
boundary-value problem to be solved along the lake axis and subject to boundary 
conditions at the long ends of the basin. The rationale we use for the ‘smearing 
operation’ and for the deduction of the model equations is the Method of Weighted 
Residuals (MWR), which is explained in detail by Raggio & Hutter (1982). In $2 we 
list the governing equations and $3 contains the derivation of the approximate 
models using the MWR. Sections 4 and 5 present the first applications to channels 
and simple lakes respectively. 

2. Governing equations 
The conservation laws of mass and angular momentum of a homogeneous fluid in 

a rotating basin under no external forces can be expressed by stating that the 
potential vorticity Z7 of each fluid particle be conserved (Pedlosky 1979). If we let 
the vertical component of the relative vorticity be g, then the absolute vorticity is 
<+fand the potential vorticity is (<+ f)/B where the Coriolis parameter isfand the 
total depth of the liquid 17. In  short, 

dn = d (=) = 0. 
dt dt H 

For this to hold, processes need to be adiabatic and barotropic. 
In  an approximate use of (2.1) small surface elevations are ignored and Tl is 

replaced by H, the equilibrium depth of the liquid. In this rigid-lid assumption the 
mass balance equation suggests a mass transport stream function 9 in terms of which 
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FIQURE 1. Elongated lake and transverse section in a natural (8 ,  n, z)-coordinate system. The 
thalweg axis (n = 0) may be a centre of symmetry (not necessarily) and have curvature K(8) .  

the depth-averaged velocity field u is given by 

1 
u = g(L x V+), (2.2) 

where V is the horizontal gradient operator and L the vertical unit vector. Substituting 
(2.2) into (2.1), linearizing and extracting a harmonic time dependence e-iot yields 
the boundary-value problem 

where 9 is the lake domain with the boundary a 9 ,  through which no mass flux is 
assumed. This equation, derived for a homogeneous barotropic fluid, is approximately 
valid also in a two-layer baroclinic model provided that the upper layer is much 
thinner than the lower layer. This property evolves from the fact that the effect of 
the elevation of the interface on the barotropic processes is weak (Mysak et al. 1985). 
Rossby waves owe their existence to the term f/H in (2.3), i.e. to Vf (planetary 
waves) or to V H  (topographic waves). For lakes with a north to south length of less 
than 100 km the Coriolis parameter f may be assumed constant and only depth 
variations are important. 

Since the topography H of the lake basin varies with respect to both dimensions, 
(2.3) is an inherently two-dimensional problem, which can be solved by separation 
of variables in only a few particular cases (Lamb 1932; Saylor et al. 1980; Mysak et 
al. 1985). 

Real lakes often have an elongated, narrow shape and likewise, the trace of their 
thalweg may, on occasion, be substantially curved. This is so for many alpine lakes 
and suggests that we should try to employ this essentially one-dimensional feature. 
The use of a natural coordinate system, as shown in figure 1, is then appropriate; 
the curved 8-axis follows the thalweg of the elongated lake and the n-direction is 
chosen to be straight and orthogonal to the s-direction. In such a curvilinear 
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coordinate system the horizontal gradient operator takes the form 
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, J =  1-K(s)n ,  (2.4) 

where K denotes the curvature of the s-axis, see Pearson (1974). In  this natural 
coordinate system the boundary-value problem (2.3) reads 

D+=O i n g ,  

6 + = 0  o n B .  (2.5) 
with the definition of the differential and boundary operators D and B, respectively 

B = 1. 

CT = w/f is the non-dimensional frequency. Even in the simple case, when topographic 
waves in a straight (J= 1)  infinite channel with an arbitrary cross-section are 
investigated, (2.5) confronts us with serious mathematical difficulties. Approximate 
solution techniques are required when more complicated topographies are to be 
studied. Analytical solutions can be constructed for piecewise exponential shelves 
(Mysak 1980) and weak parabolic depth profiles (Gratton 1983), but numerical 
(finite-element, finite-difference) methods are otherwise required. In the next section 
we present a semi-analytical approach that provides better physical insight than 
purely numerical methods generally do. 

3. Method of Weighted Residuals 
3.1. Integrated representation of the equations 

Because in most cases problem (2.5) is not separable, we operate with a generalized 
method of separation - the Method of Weighted Residuals (MWR), see Finlayson 
(1972), Hutter & Raggio (1982) and Raggio & Hutter (1982). 

Let {Pa(s, n)} be a convenient set of basis functions indexed by a, in terms of which 
the mass transport stream function +(a, n) is expanded 

Each basis function is weighted by a residue function which is assumed not to 
depend on the transverse coordinate n. All functional dependence on n is now 
incorporated in the preselected basis functions Pa, a general form of separation. 
Expansion (3.1) represents the exact solution for a separable problem provided the 
basis functions Pa(s, n )  are appropriately selected. For non-separable systems as (2.5) 
generally is, and for an arbitrary set {Pa} with N < co, expansion (3.1) is merely an 
approximation. Clearly, fast convergence is anticipated so that truncation of (3.1) 
for very small N may furnish a sufficiently accurate solution. 

The integration of (2.5) with an arbitrary weighting function &#(s, n) over the lake 
domain and along the shoreline, respectively, leads to the integral formulation of 
(2.5) r c 

If (3.2) holds for any weighting function this is equivalent to (2.5) owing to  the 
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fundamental lemma of the calculus of variation (Courant & Hilbert 1967). Expanding 
both the stream function (3.1) and the weighting function in terms of the sets {Pa} 
and {Q,}, viz. 

N 
a#(s, n) = Z Qj(8, n) a$,($) QgJ#p 

#e= 1 

and inserting these expansions into (3.2) yields 

S,(D p a  $a) Q, Wpda = 0, fag (Bpa $a) Q, a#,dl= 0. (3.3a, b) 

The integration over the lake domain 9 can be split up into two integrations over 
either coordinates using da = J d n  ds for the area element in the natural coordinate 
frame. Further, the trivial form of the boundary operator B = 1 suggests the special 
choices 

such that the only contribution to (3.3b) arises from the ends of the lake. 
Since the weighting functions are arbitrary, (3.3) can be replaced by 

Pa(s,B*) = 0, Q,(s, Bf ) = 0, for all a, B (3-4) 

a,B= 1 ,..., N. (3.5) 1 
n-B+ 

Jn_,-  pa $a) J Q P ~ ~  = 0 

$a(s)le-o,L = 0 

The residue functions @a depend only on s and are therefore extracted from the 
integration by carefully accounting for the effect of the differential operator D on 

This procedure is performed in detail by Stocker & Hutter (1985). What results 
is the system 

O < s < L ,  

s = O , L ,  
a,/3= I ,  ..., N 

",a $a = 0 

$a = 0 

with the matrix operator elements 

) - ( ~ + ~ a ) ~ - ( ~ + ~ - ~  d (a,B = 1, ..., N ) .  (3.7) 

The matrix elements MIa represent quadrature formulae in the transverse direction, 
explicitly: 

Wp: = H-lJ-lP, Q, dn, s I 
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4 

..-.- , q = 0.5; 
- , q = 1.0; 

--- , q = 2.0; - , q+ 00. 

FIQURE 2. Cross-sectional depth profile of a symmetric channel. 

whereby the integration is meant to  extend from B-(s) to  B+(s).  For prescribed sets 
{Pa} and {QP} the individual components MYa are known functions of s, which depend 
on the topography of the lake, on the curvature of its axis and on the shape of the 
shoreline. 

Equations (3.6) form a system of coupled one-dimensional differential equations 
that replace the single two-dimensional boundary-value problem (2.5). These two 
formulations are presumed to  be equivalent provided (i) the set of basis functions 
is complete in [B-, B+] and (ii) N = 00. The selected order N of the system sets a 
natural bound to the variability of the approximate solution as well as to its quality. 
At a first glance the MWR seems to leave us with a more complicated task. 
Finite-difference calculations, however, have indicated numerical difficulties such as 
slow convergence, particularly for complicated topographies and for large wave- 
numbers (Biiuerle 1986). This semi-analytical procedure may thus well prove 
advantageous in achieving a better physical understanding. 

3.2. Symmetrization 

More insight into the structure of the operator (3.7) is gained when the physical 
configuration exhibits symmetry with respect to  the axis n = 0, as in figure 2. Such 
a symmetry may exist for channels and i t  often applies approximately for elongated, 
narrow lakes. The symmetrization is also motivated by the fact that  solutions of the 
eigenvalue problem (2.3), found for circular and elliptic basins, indicate that the 
phase rotates counterclockwise and the stream function continuously changes its 
symmetry with respect to the symmetry axis of the lake. As a consequence a choice 
of only symmetric or only skew-symmetric basis functions will be a dubious 
approximation. Although the MWR need not be subject to this restriction we shall, 
for the purpose of studying channels and basins which have a symmetry axis, 
formulate problem (3.6) in a symmetrized version. To this end, the functions Pa, Qg, 
J and J-I are symmetrized by introducing the decompositions 
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Here f stands for any of the above functions and the axis n = 0 is the centre of 
symmetry. This decomposition is applied to the matrix elements in (3.8); the 
important result here is 

M o o  - P O + +  + wo-- + Moo-+  + Mo;+- (a, /3 = 1, . . . , N )  Ba - Ba Ba Ba 

with analogous expressions for WB: and Mo$ respectively. It has been assumed above 
that H- = 0 (symmetric depth profile) and the integration is from B- = -!$(s) to 
B+ = !$(a). Because the basis functions Pa and QB are decomposed according to (3.9) 
the expansion (3.1) of the solution $(8,  n) must be replaced by 

$(s, 4 = C(8, n) $2 ( 8 )  + q% n) $; (4, 
where the f superscripts on $a indicate merely affiliation to the individual P: . In 
vector notation the stream function reads 

v = ( $ ? 9  ...,$$ ; $;, ..., $&I = (v+; v-1, 
and the matrices (3.10) take the form 

O wO-+] etc. 
M o o + +  M o o - +  

Moo = [Moo+- wo = 0 

With this notation the differential equations (3.6) read 

(-ig[LII M -+ 

(3.11) 

with the matrix operators M and N, the particular form of which is unimportant in 
the ensuing arguments. 

The coupling of the solution vectors v+ and y- is induced by the off-diagonal 
operators M-+, M+- and N-+, N+- respectively. The former are due to curvature and 
vanish when K = 0. The latter originate from the vector product in equation (2.3) 
and express the effect of the Coriolis force. The restriction to only symmetric basis 
functions reduces (3.1 1) to two decoupled sets of equations. This obviously corres- 
ponds to  the claim that both terms of the sum of equation (2.3) be individually 
zero. On imposing the boundary condition this implies w = 0. It suggests that the 
approximate system (3.1 1) requires a set of basis functions containing both 
symmetric and antisymmetric functions if qualitatively correct results are to emerge. 
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4. Channel models 
4.1. Basic concept 

The suitability of the approximate model equations (3.6) deduced with the MWR is 
now tested using a straight, infinite and symmetric channel with a topography of the 
form 

where 8 is a sidewall and q a topography parameter, see figure 2, which provides the 
possibility of modelling both concave (q > 1)  and convex (q < 1) transverse depth 
profiles. The sidewall parameter E has been introduced in order that all matrix 
elements (3.8) take finite values. The complete sets of basis functions {Pa} and {Q,} 
will be chosen to be identical (Galerkin procedure) with the symmetric and skew- 
symmetric parts reading 

Here, arise in pairs; N thus characterizes a model consisting of 2N basis 
functions. These satisfy the boundary conditions (3.4) along the shoreline 
n = &!jB(s). Substituting (4.1) and (4.2) into (3.8) and assuming B(s) to be constant 
it is seen that 

(4.3) 

and 

6 1 2 0  - h-1 P O  M 0 2  - h-1 K O 2  
@a - 0 pa? 

M0; = B hi' P$, 

Fa- 0 pa? 

while the elements with the superscripts 10,01, 11, 12 and 21 all vanish. 
depend on E: and q and can be calculated 

numerically, see Stocker & Hutter (1985). The (non-symmetrized) matrix operator 
(3.7) takes the form 

The dimension-free matrix elements 

d 
ds 

- B ( P 0 + P 2 ) - + B  

This operator has constant coefficients whenever the depth-profile is constant or 
exponential with respect to the basin axis. For an infinite channel, however, we prefer 
ho(s) = constant. A carrier-wave ansatz 

(4.5) 

with a dimensionless complex-valued wavenumber k ,  Im ( k )  8 0 is meaningful in 
semi-infinite and finite channels, and a length L is then appropriate. With (4.4) and 
(4.5) the symmetrized form of (3.6) reduces to a system of algebraic equations 

c c  = 0, 

( c l ,  . . . , c N ;  c N + ~ ,  . . . , c 2 N )  = eik8ILc, y = (y+;  y-)  = eik8lL 

(4.6) 
2 P O +  + + I P S + + )  - ( r k )  ( P O - +  + P 2 - + )  

( P O +  - + P+-) a( (rk)2 P O - -  + P--) 
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in which the aspect ratio parameter r = B / L  has been introduced. C is a (2N x 2N)- 
matrix and depends on u and k. Equation (4.6) admits a non-trivial solution vector 
c if and only if 

det C(a, k) = 0. (4.7) 

This characteristic equation forms the dispersion relation a (k )  for topographic 
Rossby waves in a straight infinite channel. This is a polynomial equation of order 
2N in ( rk)2 with real coefficients. For each frequency an Nth order model, therefore, 
yields 4N wavenumbers counting complex conjugates and pairs having opposite 
signs. So the model furnishes waves travelling in both directions of the channel. 

Let ky (y  = 1,. . . , 4N) be a root of (4.7) corresponding to a frequency u and let 
cy(cUy) be the associated eigenvector, (component) of (4.6). A general channel solution 
@(s, n, t )  can then be written as 

in which solutions belonging to individual k occur in a linear combination by an 
arbitrary complex vector d, (d ). Representation (4.8) is an approximate solution in 
a straight infinite channel. b'or this particular configuration problem (2.5) is 
separable, the coefficients of the separated differential equation, however, are 
non-constant, and for very special topographies exact solutions can be obtained, see 
later and Gratton (1983). The MWR probably offers more freedom in modelling the 
channel topography, because improved accuracy can be obtained by higher-order 
models and convergence is expected. 

4.2. Dispersion relation 
Solutions of (4.7) may be plotted schematically for a first-order model N = 1 in a 
(Re(k), Im(k),a)-coordinate system, see figure 3. This is a model which uses one 
symmetric and one skew-symmetric basis function of the form (4.2) and is of lowest 
possible order. Its graph is symmetric with respect to both axes Re(k) = 0 and 
Im(k) = 0. Three regimes 1 , 2 ,3  can be distinguished where the wavenumbers k take 
real, complex and purely imaginary values respectively. Table 1 gives the periods at 
which the individual regimes join for different topography and sidewall parameters. 
In  regime 1 all wavenumbers k are real and, therefore, represent physically possible 
channel solutions. Typically for Rossby waves, for each frequency there exists a long 
and a short wave. It is worth noting that Re(k) can have both signs. This is in 
contrast to planetary Rossby waves which are due to the 8-effect (Holton 1979) or 
Rossby waves on the continental shelf (Le Blond & Mysak 1978), the reason being 
that here H / H  changes sign in the channel. So, such configurations enable topographic 
Rossby waves to propagate in both directions. In either case, as an effect of the 
Coriolis force, the structure of the wave on the northern hemisphere is right-bound 
with respect to the direction of phase propagation. The dispersion relation (4.7) 
contains only even powers of u such that either sign is mathematically reasonable. 
It turns out, however, that negative signs of u result in a set of left-bound waves 
which propagate on the southern hemisphere where the Coriolis parameter f takes 
negative values. So, the sign of the timescaling factor f (Coriolis parameter) 
determines the sign of the non-dimensional frequency a. The structure of the stream 
function depends upon the frequency range. Small frequencies favour periodic 
patterns along the channel. A critical wavenumber can be found at which no energy 
is transported along the channel. This corresponds roughly to wavelengths of about 

15 FLM 170 
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I 
I 

FIGURE 3. Schematic plot of the complex dispersion relation u(k) for an infinite channel with 
E = 0.05 and q = 0.5 in a first-order model. In regime 1, k is real; in regime 2, it  is complex with 
the constant modulus lkl; and in regime 3, k is purely imaginary, taking asymptotic values k, and 
k, for large Q. 

T,PI %PI lkl 

!? E = 0.05 E = 0.10 E = 0.05 E = 0.10 E = 0.05 E = 0.10 

0.5 52.8 58.3 10.5 11.8 6.6 5.9 
1 .o 60.5 64.3 13.2 14.4 6.9 6.2 
2.0 83.0 88.2 22.0 22.6 6.8 6.3 
5.0 174 199 58.2 61.8 6.1 5.8 

TABLE 1.  Periods and corresponding wavenumbers in a first-order model, which separate the 
regimes, depending on topography and sidewall parameters q and E respectively. The period T is 
calculated using T = 16.9h/u corresponding to 45" latitude. At T, no wave energy is transported. 

half the channel width and the associated periods are listed in table 1. Waves with 
intermediate frequencies of order 1 have a mixed periodic-exponential structure and 
do not represent possible solutions in an infinite channel. At frequencies u > u2 the 
solutions grow or decay exponentially. For later use, the union of the three regimes 
of the dispersion relation in figure 3 will be called a mode unit. 

Let us proceed to the second-order model; it  furnishes 8 wavenumbers to each 
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FIGURE 4. Schematic plot of the complex dispersion relation ~ ( k )  for an infinite channel with 
E =0.05 and q = O . 5  in a second-order model. Five regimes with respect to cr can be 
differentiated. 

frequency and its dispersion relation consists of two interlocking mode units, see 
figure 4. Thus there are now two branches with real, complex and imaginary k, 
respectively. The relative size of the mode units and their spatial position within the 
(k, a)-coordinate system depend crucially upon the topography. The cylindrical 
surface of the first-order model degenerates to a smaller bell-shaped surface, i.e. Ikl 
now depends on the frequency. The second mode unit forms an outer shell, which 
here has the form of a cone. Physically possible solutions for the infinite channel exist 
in regime 1 for both mode units and in regime 2 only for the first mode unit. The 
qualitative shape of the dispersion relation for an Nth-order model can be guessed 
from figures 3 and 4. The modulus Ikl is plotted for a third-order model in figure 5, 
demonstrating clearly the addition of the next mode unit. 

The MWR is an approximate approach and therefore convergence properties are 
expected. These are studied for the real branches of the dispersion relation. Figure 
6 summarizes the results. The dispersion relation for N = 3 differs only slightly from 
that of the second-order model. The corrections of the second mode unit when 

15-2 



446 T .  Stocker and K .  Hutter 

0 5 10 15 

Ikl+ 
3 

FIQURE 5. Modulus Ikl of the third-order dispersion relation for an infinite channel, q = 0.5; 
E = 0.05. 

0.3 

U 
0.2 

0.1 

0 5 10 15 20 
k 

U 

0.3- 

0.2- 

0.1 - 

0 

FIQURE 6. Convergence ofthe dispersion relation when increasing the order of the model from N = 1 
(-.-), N = 2 (---) to N = 3 (-) for (a) convex (q = 0.5) and ( b )  concave (q = 2.0) topography, 
E = 0.05. 

increasing the order are also shown; however, for a statement on convergence a 
4th-order model would be needed. Convergence is not uniform in k, being better for 
small k than for large k ;  furthermore, it is better for convex (q = 0.5, figure 6a) than 
for concave (q = 2.0, figure 621) topographies, which is unfortunate as the latter are 
more realistic. Further calculations have shown that the sidewall parameter E does 
not influence convergence appreciably. 

The quality of the MWR-approximation is more obvious when the dispersion 
relation is compared with that of an exact solution as in figure 7. The simple 
configuration of a straight channel leads to separable equations; these are easy to 
integrate provided the depth profile is piecewise exponential as indicated in the inset 
of figure 7. The dispersion relation a ( k )  evolves from the matching conditions of the 
stream function within the channel. As figure 7 (a) demonstrates, the approximate 
dispersion curves calculated by the MWR applied to the same depth profile converge 



One-dimensional models for topographic Rossby waves 447 

0.5 

0.4 

0.3 
U 

0.2 

0.1 

. .  I " "  " "  - - . -  
0 i lb 20 25 

k 

FIGURE 7. 
exponential 
modes. 
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k 
Comparison of the dispersion relation a ( k )  of exact solutions in a 
channel (see inset) with the MWR solutions for N = I ,  2, 3 and the 

0 5 10 15 20 25 

piecewise 
two first 

fast to the exact dispersion relation for the first mode. N = 2 already represents a 
satisfactory approximation within a few per cent. Convergence of the second mode 
is slower, as stated earlier. For steeper depth profiles, figure 7 ( b ) ,  convergence is 
significantly slower and higher-order models may be required. But i t  also appears 
that the selected set of basis functions is not best for such configurations, as wave 
activity is concentrated at  the shore. 
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FIGURE 8. Effect of topography on the dispersion relat.ion in a channel, -, first mode; -.-, 
second mode, c = 0.05, (a)  N = 1 ; ( b )  N = 3. 

i I 1st I 
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0 5 10 IS 20 0 5 10 15 20 
k k 

FIGURE 9. Effect of the sidewall parameter E on (a )  convex (q = 0.5) and (b )  concave (q = 2.0) 
profiles in a second-order model. 

Figure 8 shows the influence of the variation of the topography parameter q in a 
first- and third-order model. Comparison of figures 8(a)  (N = 1) and 8 ( b )  (N = 3) 
indicates clearly how sensitively the dispersion relation reacts to the topography. 
Generally, an increase of q shifts the dispersion relation to smaller frequencies ; thus 
periods at  the same wavenumber become longer. This could already be inferred from 
the fact that topographic gradients tend towards the boundary as q increases and 
the system will become weaker in its support of topographic Rossby waves. 

Finally, figure 9 displays the dispersion relation of a second-order model for two 
different values of the sidewall parameter E and for both convex and concave depth 
profiles. The latter are less affected by 8 than the former because all convex profiles 
of the form (4.1) join the sidewall horizontally. The sidewall effect consists of a 
decrease of the frequency with growing E, which might be expected since topography 
variations are reduced thereby. 

The question of whether k, at which au/ak = 0 exists for all topographies or 
wanders off to infinity is of some practical significance. If situations with k, = 00 

existed, closed basin solutions could not be constructed. Figure 10 displays k, against 
the topography parameter q for a few values of E. Whereas for convex profiles k, 
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FIGURE 10. Plot of the critical wavenumber k,, where the group velocity is zero, as a function 
of topography and sidewall parameter for the first mode in a third-order model. 

hardly depends on the sidewall parameter E this is not so for concave profiles: a 
decrease of E conspicuously increases the values of k,. Alternatively, for large 
topography parameters k, is fairly independent of q. It is evident that models with 
very small sidewall parameters have very large critical wavenumbers and it appears 
that the dispersion relation becomes single valued with respect to Q. Such a 
conclusion is not appropriate, as can be demonstrated following Huthnance (1975) 
with modifications. 

4.3. Channel solutions 

Equation (4.8) represents a general solution in a straight, infinite channel with 
arbitrary cross-section. @ is a complex-valued function and so both real and 
imaginary parts are physically reasonable solutions. However, as can be easily 
shown, they differ only by a spatial or temporal phase shift. Rather than considering 
general solutions such as (4.8), we only investigate solutions to particular 
wavenumbers. 

Figure 11 exhibits the quality of the approximate solutions. Calculations have 
revealed that for a convex topography solutions converge rapidly for a wide range 
of wavenumbers, a result which is in accord with the observations above. For a 
concave topography (q = 5.0, figure 11) the third-order solution is an acceptable 
approximation when k = 2 (figure 11 a) ; however, as figure 6 has already suggested, 
convergence for higher wavenumbers is slower (figure 11 b). Convergence is obviously 
also influenced by the choice of basis functions and it seems that the trigonometric 
functions are an appropriate set for small wavenumbers. It was a straightforward 
choice and made for analytical and computational simplicity. There may, however, 
be other complete sets, fulfilling the boundary conditions, which provide better 
results in some special cases. With the (sin, cos)-set the exact transverse functional 
dependence is well modelled for fundamental modes, with not too large wavenumbers 
and small topography parameters. 

Figure 12 analyses the effect of the cross-channel topography on the stream 
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FIQURE 11. Convergence properties of the stream function of the first mode scaled to a maximum 
value 1.0. The view is in the positive &direction into which the phase propagates in a right-bound 
way. The sidewall parameter B = 0.05 is selected, q = 5, (a) k = 2;  ( b )  k = 10. 
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FIQURE 12. Transverse topography dependence of the stream function for the wavenumber 
k = 2 and the first two modes. N = 3, (a) first mode; (a) second mode. 

function using q as a parameter. In view of the previous results, a third-order model 
is anticipated to be sufficiently accurate. The effect for small wavenumbers ( k  = 2) 
and the first mode (figure 12a) is comparatively weak: wave activity is slightly 
shifted towards the right boundary for increasing topography parameters. Larger 
wavenumbers enhance this effect. 

For the second-mode solutions an increase of the topography parameter again 
causes a shift of the $-surface towards the right boundary, see figure 12b. The 
right-most crest, however, is weakened and for larger topography parameters the 
main activity is in the middle crest. 

Evidently, the transverse structure of topographic Rossby waves also depends 
strongly on the wavenumber k .  This effect is comparable in magnitude with that of 
the topography. Figure 13 demonstrates this for both types of topographies and the 
first two modes. 

An increase of k generally shifts the stream function towards the right shoreline. 
The effect is large (small) for profiles with large (small) q particularly for the first-mode 
unit. Topography and wavenumber effect, therefore, act  in the same way. These 
properties have not been clearly demonstrated in previous work. Suffice i t  to state 
that they have important practical bearings when mooring sites are projected. 

4.4. Velocity profiles 

The general channel solution (4.8) which satisfies the homogeneous system (3.6) is 
determined up to a constant factor. In order to compare different velocity profiles 
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FIGURE 13. Wavenumber effect on the stream function for (a) convex (q = 0.5) and (b)  concave 
(q = 5.0) topography, E = 0.05 and the first two modes of a third-order model. 

this constant should be fixed by using a further criterion. It seems reasonable to scale 
the occurring wave patterns by normalizing the free constant such that the global 
kinetic energy content is constant. (There is no potential energy for topographic 
Rossby waved in a rigid-lid formulation.) Here, the problem is posed in terms of the 
barotropic mass transport stream function and a solution yields information about 
a depth-averaged velocity field. This allows the calculation of only a lower limit of 
the kinetic energy content. 

The kinetic energy per unit mass that is contained in an infinitesimal volume is 

dEg,, = +(uz + zP) J d n  ds dz, (4.9) 

in which the velocity components u, v can be expressed in terms of the stream 
function with (2.2), and for straight channels J = 1. 

A minimum average energy density is obtained by integrating (4.9) across the 
channel axis and over the vertical, then operating with 

l T  
lim T J o  dt, lim 
T+a, L-Wx 

and dividing by the cross-sectional area. It then reads 

where y = 2n/B and ’ = d/dy. When the stream function is scaled by I/(&,? each 
wave contains the same kinetic energy. This enables comparison of the strength and 
structure of a wave pattern as a response to a given energy input. 

Figure 14 displays the amplitude distributions of the along-shore and cross-channel 
velocity profiles for the first mode at k = 10 and E = 0.5 for four different topography 
parameters q. Sign changes correspond to a phase shift of 180’. Evidently, the 
u-component indicates a strong right-bounded coastal jet which is well known in 
forced circulation models (Simons 1980). Its strength depends upon the parameters 
q and 8. An increase of q lowers the absolute value of the velocity components 
considerably. 

We have also observed, and figure 14 provides partial corroboration, that 
convergence of at least u is slower than that for the stream function. The reason is, 
of course, differentiation. Deviations of the computed velocity profiles from what 
they should be occur at the left shoreline (figures 14a and 15a). 
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FIQURE 14. Transverse topography dependence of the depth-averaged velocity components (a) u 
(along-channel) and (b) v (across-channel) for N = 3, k = 10, E = 0.05 and the first mode. A11 profiles 
are scaled such that the kinetic energy contents are comparable. 
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FIGURE 15. Wavenumber effect of the depth-averaged velocity components for q = 2.0, E = 0.05 
and the first two modes of a third-order model, (a) u-component; (b) v-component. 

2 

0 

- 2  

-4  

-0.6 -0.7 -0.8 -0.9 -1.0 
FIGURE 16. Effect of the sidewall parameter E on the u-component (along-channel) at k = 10 and 
with q = 2.0. Because the profiles differ from each other only at the right shore this domain is 
enlarged. N = 3, first mode. 

Figure 15 illustrates the wavenumber effect for the case q = 2 (parabolic) and 
E = 0.05. With growing wavenumber, activity in the u-component shifts to the right 
shore and, correspondingly, activity diminishes on the left part of the channel. 
Alternatively, cross-channel components grow with increasing k. Therefore long 
waves exhibit particle motion which is mostly along the channel axis. Shorter waves 
with wavelengths smaller than about a channel width have velocities of comparable 
order in both directions. These properties also hold for the second mode. 

As anticipated when introducing the sidewall parameter E its effect on the 
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FIGURE 17. @-contour lines of a reflection of topographic waves at a vertical wall. The insets explain 
the composition of the reflection pattern with 0,  incident wave and 0, reflected wave. The selected 
parameters are N = 3, E = 0.05, for (a)  q = 1.0, u = 0.305 and ( b )  q = 0.5, u = 0.202. 

depth-averaged velocity profiles is very weak and only recognizable in the u- 
component and close to the shoreline. Figure 16 demonstrates this for a channel with 
parabolic depth-profile. Velocity profiles differ from each other only very close to the 
right boundary. The u-component of the velocity vector there is directly governed 
by E and its absolute value increases as e approaches zero. 

The above results can be used to answer questions which arise when topographic 
wave motion in channels or narrow elongated lakes is to be detected and recorded. 
Scrutiny of the wavenumber dependence shows that, in order to record the first mode 
on a concave topography (q = 2.0, q = 5.0), the mooring system is best placed within 
a domain that is 0.05 B to 0.1 B (B is the channel width) away from the shore. Then, 
both velocity components are of comparable magnitude and a whole range of 
wavenumbers can be detected with a velocity vector which turns clockwise. The 
second mode can most likely be detected within a domain which is 0.1 B to 0.2 B 
away from the shore. For a proper test of the wave structure two moorings at the 
same side of the channel are desired. 

4.5. Rejection of topographic waves 

A property of the MWR is that it furnishes solutions with complex wavenumbers k 
in a natural way. This suggests that solutions of the form (4.8) can be found which 
represent the situation of reflected topographic Rossby waves in a channel. The idea 
is to superpose several waves with the same frequency: an incident and a reflected 
wave, both with real k, and some waves with Im(k) > 0 which are important only 
in a boundary zone where the reflection is induced. The superposition satisfies the 
boundary condition $ = 0 (no flux) at the reflecting wall. 

Consider a semi-infinite channel s 2 0 with a wall at s = 0. One particular wave 
mode forms the incident wave; its phase and group velocities may both propagate 
towards the wall as shown for a first-mode response in figure 17(a). Alternatively, 
group and phase velocities may have different directions as in the second-mode 
response of figure 17(b). ‘Incident’ means that the energy propagates towards the 
wall and all the reflected waves need to have opposite energy propagation. Then, the 
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FIGURE 18. Reflection pattern in a composed channel. For 0 < s < so the depth varies exponentially 
along the axis whereas it is constant for s > so. This connects the isobaths of both channel domains 
n > 0 and n < 0 and enables wave energy to leak into the opposite domain in the course of 
reflection. The selected parameters are E = 0.05, for (a) N = 2, q = 2.0, u = 0.260, so = 2.0 and (b) 
N = 3, q = 0.5, Q = 0.200, so = 1.0. 

superposition and the determination of the compound solution is unique. We have 
found that the largest portion of the reflected energy lies in the mode with the 
corresponding wavenumber belonging to the same branch of the dispersion relation 
(indicated by arrows in the insets of figure 17). 

Therefore, the mode with the negative of the incident wavenumber is hardly 
excited, and reflection causes primarily a shift of wavenumber rather than a change 
of its sign. As a consequence, wave activity remains at the side of the incident wave. 
What results is a beat pattern with its first 'calm' area at approximately 
2xB/lk,,-k,,,I away from the wall. Within such a cell a phase propagation in the 
same direction as the incident wave can be observed, and the structure of this cell 
depends on the two main wavenumbers kin and kOut. If these differ markedly from 
each other rather local and small-scale patterns emerge. This may hint that elongated 
basins scarcely show fundamental topographic waves with basin-wide structure 
unless they have a very special bathymetry (Ball 1965; Mysal et al. 1985). Finite- 
element calculations of Trosch (1984) revealed similar results. It is characteristic of 
these basin-wide wave structures that the phase rotates counterclockwise around the 
basin. Figure 17 demonstrates that such a rotation does not occur in this simple 
configuration. 

So, in an elongated basin the depth-profile at the very end is of crucial importance 
for the structure of the reflection. In the case of a vertical wall the lines of constant 
f / H  (isobaths) along which the waves can propagate terminate at the channel end 
and apparently prevent the wave from changing channel side. 

The differential equations (4.4) keep constant coefficients provided that h, varies 
exponentially along the channel axis. Therefore let the channel be composed of two 
sections. Close to the barrier, for 0 < s < so, the depth increases exponentially with 
s: ho(s) = eh,, exp ((s/s,,) log (1 + l /e));  for s > so it  is constant. The isobaths now no 
longer intersect the wall but are c-shaped. Figure 18 shows solutions for such a 
configuration; a significant difference to figure 17 is observed. Now, there is wave 
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2 : l  basin N = 1 N = 2  N = 3  

q = 0.5 0.314 
0.292 
0.264 

q = 2.0 0.198 
0.186 
0.169 

q = 5.0 0.087 
0.081 
0.073 

0.335 
0.316 
0.293 
0.260 
0.254 
0.246 
0.167 
0.163 
0.158 

0.337 
0.317 
0.295 
0.274 
0.271 
0.267 
0.208 
0.206 
0.202 

TABLE 2. First eigenfrequencies Q, r = 0.5, i.e. 2: 1 basin, and E = 0.05 in a simple lake model. There 
is always a pair of eigenfrequencies differihg from each other by less than 1 % and the table shows 
only one of them. 

9 r = 0.5 r = 0.4 r = 0.3 r = 0.2 

0.5 0.335 0.337 0.339 0.341 
1 .o 0.303 0.304 0.304 0.3051 
2.0 0.260 0.260 0.261 0.261 
5.0 0.167 0.167 0.167 0.1681 

TABLE 3. The first eigenfrequency in a second-order model for various aspect ratios r and 
topography parameters q, E = 0.05. Question marks indicate computational difficulties. 

activity also in the opposite half of the channel corresponding to the negative of the 
incident wavenumber. This amounts to a weak leakage of wave energy by reflection 
into the other channel domain (figure 18a). However, probably owing to the 
non-smoothness of the isobaths, it  is comparatively weak and most of the reflected 
wave activity remains on the incident side. 

Figure 18 (b) shows a reflection pattern of lower frequency, kin and kOut lie farther 
apart and therefore more local and complicated structures result. Moreover, at the 
beginning of the reflecting shelf (s x so) wave activity is intensified. These specific 
results demonstrate that the global wave pattern is very sensitive to the basin shape 
and the depth profile at the channel end. Further studies are needed. 

5. Lake models 
As there exist 4N independent channel solutions of the form (4.8) in an Nth order 

model, these can be superposed to a lake solution. A crude lake model is obtained 
by inserting vertical walls at two positions 8 = 0 and s = L. There, the stream 
function @ must vanish, 

(a= 1, ..., 2N). (5.1) I 4N 

y = 1  

4N 

y = 1  

Z caydy = O  

Z eikrcaydy = 0 

This homogeneous system has a non-trivial solution provided that its determinant is 
zero. Equations (5.1) select the eigenfrequencies of the system which depend on the 
bathymetry given by r,  q and 8. Periodic lake solutions exist only for 0 < cr < c0, 
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FIGURE 19. Lake solution in a 2: 1 basin plotted for three different times through a quarter of a 
period T ,  using N = 2, q = 0.5, e = 0.05 and u = 0.335. Wave activity is strongest in the middle 
of the basin and damped at both ends. 

where go denotes the maximum frequency of the real branch of the first-mode unit. 
Consequently, frequencies decrease appreciably when the topography parameter q 
increases. This effect is demonstrated in table 2 which compares the first eigen- 
frequencies of different models. For a parabolic depth profile a third-order model 
offers adequate estimates of the eigenfrequencies. A parameter study reveals that the 
topography parameter q influences the eigenfrequencies much more than do r or even 
8, see table 3. However, for smbll r ,  r < 0.2, convergence is more difficult to obtain, 
the reason being that large contributions of modes with complex wavenumbers k ,  
Im(k)  > 0 arise. The results ofa  series of reflected topographic Rossby waves suggest 
that Ball-type solutions, i.e. phase lines rotating around the basin, are not observed. 
Figure 19 shows a series of pictures of a lake solution in a 2 :  1 basin. The influence 
of the vertical walls is obvious in that wavecrests approaching them die out. As 
mentioned, the fundamental mode does not resemble Ball-type behaviour ; rather, 
the wave pattern exhibits a local structure. As the eigenfrequencies decrease the local 
character becomes stronger, but there is still a right-bounded phase propagation. 
Figure 20 presents some specific lake solutions for N = 2 and N = 3 models. Figure 



One-dimensional models for topographic Rossby waves 457 

FIQIJRE 20. Stream function of three. examples of solutions in a 'crude' lake model. The parameters 
are 

N r 4 6 U 

(4 2 0.4 2.0 0.05 0.260 
2 0.4 2.0 0.05 0.244 

0.5 0.05 0.120 (4 3 0.3 
(b )  

20(a) is similar to a compound channel solution of the form of figure 17 (a). Wave 
patterns in n > 0 and n < 0 seem not to interact, whereas for a higher mode (figure 
20b) flow across the channel is observed. Figure 20(c) displays the stream-function 
pattern of a very complex solution with strong local structure. It seems that Ball-type 
solutions are rather unlikely to exist in natural, not very smoothly shaped basins. 

Calculations further showed that for small aspect ratios r the system (5.1) is very 
difficult to handle. The smaller r is, the larger are all IIm(k)l, and terms of (5.lb) 
become dominant : the smallest inaccuracies in the eigenvector d, are fatal because 
of their amplification in the terms proportional to ei%. A remedial measure might 
be a superposition of two semi-channel solutions displaced with respect to each other 
by a length L. 

6. Conclusions 
We have demonstrated that the MWR is an effective tool in deducing classes of 

approximate one-dimensional models for topographic Rossby waves. This has not 
been analysed in detail by finite-element of fmite-difference methods, and these latter 
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techniques are rather time consuming on a computer and results are more easily 
accessible by our reduced models. 

By increasing the order N of the model, both the dispersion relation and the stream 
function demonstrated convergent features. For a special channel this was 
consolidated by comparison of our approximate solutions with exact analytical 
solutions. N = 3 proved to furnish a practicable model for all wavenumbers, and for 
a low wavenumber domain even the cruder model ( N  = 2) produced results that were 
reasonably close to those of exact solutions. Dispersion relations and stream 
functions indicate conspicuous topography and wavenumber dependencies. Addition- 
ally, the dispersion relation exhibited domains with complex wavenumbers. These 
correspond to non-periodic, exponentially decaying modes. With these modes, the 
problem of topographic wave reflection in a semi-infinite channel could be solved. 
This analysis demonstrated that the bathymetry at the reflecting wall is of crucial 
importance and governs the structure of the global pattern. Wave energy can only 
leak into the opposite channel domain when isobaths are continuous, and the amount 
of this leakage depends on the order of continuity. 

An Nth-order model yields enough solutions to combine them and satisfy no-flux 
conditions at two different positions. Analysis of a ‘crude’ lake model showed that 
the eigenfrequencies depend strongly on the depth profile of the channel. Wave 
patterns in elongated lakes showed a more complicated and local structure than 
expected. Solutions are very sensitive to round-off errors when r is small and a 
modified procedure must be found to construct reliable results. 

Our model also offers the possibility of solving topographic wave problems in even 
more complex domains where hO(8) in (4.1) varies with position. In  this case the 
matrix operator K in (4.4) no longer has constant coefficients and an algebraic 
procedure cannot be applied. The operator K acting on y then forms a system of 
coupled differential equations which must be solved by a numerical two-point 
boundary-value solver. These and other open questions are the subject of further 
investigations. 

The artwork was done by C. Bucher and F. Langenegger and M. Staub typed 
various versions. 

Note added in proof. In work still under progress and shortly to be submitted we 
describe topographic wave motion in closed basins in much greater detail. In  
rectangular basins with depth variation along the thalweg we also found solutions 
as shown in figures 19 and 20, but equally detected Ball-type modes and modes with 
wave activity restricted to the long ends of the rectangle. 
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